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Annealing schedule from population dynamics
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We introduce a dynamical annealing schedule for population-based optimization algorithms with mutation.
On the basis of a statistical mechanics formulation of the population dynamics, the mutation rate adapts to a
value maximizing expected rewards at each time step. Thereby, the mutation rate is eliminated as a free
parameter from the algoriththS1063-651X%99)06004-3
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I. INTRODUCTION The observables are the cumulants of the energy distribution
of the population. Selection of the “fittest{the low energy
. . ) members is completely defined in terms of these variables.
been successfully applied to problems in physits] an.d For certain energpy fun){:tions, this enables a prediction of the
beyond[6]. This class of algorithms is based on the simul- 510 rithm dynamics to high accuracy over large numbers of
taneous tracking of more than one point in search sgace generationd11]. In Ref.[12] it was proposed to use this
“population,” in analogy to biological evolutiof7]), in or-  formalism in order to determine an annealing schedule from
der to make trapping in local optima less likely during thethe predicted dynamics. However, each of the two immediate
process of optimization. In addition, stochastic noise is use@outes faces a major obstacle: The analytical approach is
to generate random displacements of the search p@imis-  only feasible for exactly known energy functions with simple
tations”), performing a local optimization. A major problem properties, and involves a complicated maximum entropy
in these algorithms is the adjustment of the noise level for &alculation. The alternative way via measuring the current
given optimization task. In the beginning of the search, highcumulants during evolution is spoiled by large sample-to-
noise levels help to identify promising regions of the searchsample fluctuations. Here we propose a model which, though
space, while for a subsequent fine tuning low noise workgnspired by this, does not have to deal with these problems.
best. This problem is well known from simulated annealingFor ana priori unknown energy functiortbeing the usual
[8], an optimization algorithm where noise is introduced bycase when dealing with optimization problenasless formal
means of a formal temperature. Lowering, or “annealing,” framework is needed. This is supplied by a dynamical model
the temperature from high to low values in the course of thdased on energy correlation formulated in R&]. It will
optimization leads to improved results compared to an optibe used here to predict an optimal noise rate by maximizing
mization at fixed temperatures. However, there remains ththe expected performance of the algorithm in each time step.
pr0b|em of Choosing a suitable annea"ng schedule for én the following we will define two test functions and two
given optimization problerfi8]. The same problem occurs in algorithms to be considered. A model for the prediction of
population-based optimization algorithms, and will be ad-the mutation effects will then be given. An improved algo-
dressed in the remainder of this paper. rithm will be defined on the basis of this model. It is then
For some population-based algorithms, heuristics havépplied to the test functions and its performance compared to
been proposed that adjust the noise rate during optimizatiorstandard versions of the respective algorithms.
For example, when noise is implemented as random steps of
fixed Euclidean distance in the search space, its step size can
be adjusted according to an estimate for the most promising
next step on the basis of the previous ¢@& Another ap- Let us consider an optimization problem in terms of the
proach, taken by Davi§9], uses a set of noise operators minimization of a real valued functio&(S) on a binary
competing for high scores in producing low energy searchsearch space. Its value is the energy of the test ®iwhich
points. Although such approaches work in practice, theyis to be minimized, equivalent to a search for the ground
have not been formally established on the basis of a dynamitate energy of a physical systdri¥]. In biological terms
cal formulation of the algorithm. A major problem is the this corresponds to the negative “fitness” of an organism to
enormous complexity of the dynamics of population-basethe maximized for survival. The discrete search space will be
algorithms. parametrized through the binary representaSen{ + 1}" of
Recently, this problem has attracted parts of the physictengthN.
community, applying statistical mechanics methods to the Two functions serve as examples: one purely additive en-
algorithm dynamics. Pgel-Bennett and Shapirpl0] de-  ergy function, and another with many local optima. The first
scribed the average population dynamics in terms of the digsroblem is a random field paramagnet
tribution of energy values in the population at each time step.

Population-based optimization algorithmid—3] have

Il. TEST SYSTEM
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with random couplingg; taken from a Gaussian distribution ergy function, which is usually not available for realistic op-
with mean 0 and variance 1. ThN spins S* with i  timization problems.

=1,... N andS*=+1 form the genetic string of the mem- Here we use a different approach which is based solely on
ber o of the population. The second function is the NK a phenomenological parameter that is accessible by measure-
model energy functiof15] as an example for a hard search ment if the energy function is not knowa3]. In particular,

problem with many local minima. It is defined through we will use a model for the lowest order average dynamics
of the mutation operator on the basis of the energy correla-

tion m of mutation on a given energy landscapgs),
_ <EaE$>a,mut_<Ea>a<E$>a,mut

E2) _(E )2
with 2%*1 random energy values;(S*) drawn from a uni- (Ba)oa=(Eala

form distribution over the intervdD,1] and a randomly cho- where( ), denotes an average over the population, @,

sen permutation of sitdg to iy , both for each. Originally,  an average over all possible mutation events. The energy
this function has been formulated for the study of evolutionggrrelationm is a measure of how strongly, on average, the
on tunably rugged energy landscapes with application to th@nergy of a mutant is correlated to that of its parent, for a
evolution of the immune respon§e6]. These functions will - given mutation operator applied to a given energy function.
be minimized by means of a population-based algorithmsych correlations form the backbone on which the search
which is defined as follows: First, a random ensemble Ofprocess in mutation-based a|gorithms proceeds_ Energy cor-
search pointsS, with a=1,...,P and energie€,=E(S,)  relations can be measured for many hard optimization prob-
is chosen(a “population”). One time step of the algorithm |ems, as were recently classified in REE7]. In this frame-
consists of the following procedurél) Select the member work, the energy distribution of a population after mutation

with the lowest energy(2) Reproduce it once(3) Replace  can be approximated by its cumulants as a functiompf
the member with the highest energy by the new cagy.

N
Ea=i§1 Ei(S™:S0, .. ..S), ¥

3

“Mutate” all members except the original one with the low- K'=mk+(1- m)x?,
est energy by inverting each spin with a small fixed probabil-
ity y. Repeating these steps then forms an evolutionary al- Kg‘=m2K2+(1—m2)Kg,
gorithm searching for low lying energy states. It is driven by
selection lowering the mean energy of the population and K3=m3ks,
mutation increasing the variance.
For comparison let us also look at a simplified algorithm, Kp'=mtk,, (4

a stochastic gradient descent. After the initial population is

chosen as above, the following steps are takénSelect the  where «9 and 3 are the energy mean and variance of a
member with the lowest energy2) Reproduce itP—1  random initial population. This model was derived in Ref.
times. (3) “Mutate” the new copies by inverting each spin [13]. The underlying assumption of this model is that the
with a small fixed probabilityy. (4) Replace all members, population of the algorithninot the landscape itsg¢ltan be
except the one with the lowest energy, by the mutated copexpanded in cumulants around a Gaussian. In fact, one ob-
ies. Here the offspring of the best member takes over theerves that the initial random population for many real opti-

entire population in each time step. mization problems fulfills this requirement well. In the
framework of this expansion, the above model use$o
Ill. MODELING THE ALGORITHM DYNAMICS predict the expected energy distribution of the population in

the next time step. Such a model, based on energy correla-
We will model the dynamics of these algorithms in termstions, further assumes that the lowest order correlation

of the energy distributiom(E) of the population expressed contains major information about the average effect of the
as an expansion in cumulants. The energy distribupiti) mutation operator. It has been shown to be useful to describe
of a population is the natural quantity for the selection op-the dynamics of a population-based algorithm over at least
erator, which solely acts on the energy values of the search00 generations, both for correlated and poorly correlated
points. The expansion in cumulants of the energy distributiodandscape§13].
p(E) has been shown to be a useful approximation for How can such a model be used to improve an optimiza-
population-based algorithmisl1]. At each time step, the tion algorithm? Let us look at a numerical example for the
evolving population is then approximated by a set of thesalynamics of a stochastic gradient descent under a fixed mu-
variables. When also modeling the mutation operator, ongation ratey, as shown in Fig. 1. Optimization of the first test
has to be more careful. Mutation, acting on the underlyingunction (1) is shown with a stochastic gradient descent,
representation instead of the energy values themselves, reearching for the minimal energy configuration of a random
quires additional assumptions to model its dynamics in termparamagnet oN= 128 spins in an external field. For a large
of p(E). For example, one could obtain a maximum likeli- mutation ratey one sees that the early gain is large, whereas
hood estimation for the underlying spin states correspondingpr small v, as shown by the solid curve, a poor early gain is
to a given energy cumulant, and use this to calculate théalanced later by a slow but steady improvement. For opti-
expected effect of the mutation operator. However, such anization problems involving computationally costly energy
procedure requires simple energy functions to allow for thesvaluation, this behavior poses a severe problem. Knowledge
calculation, and, of course, a complete knowledge of the enef the latter stages of the dynamics would be needed at the
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FIG. 1. The evolution of the member with maximum fitndss
= —Ein is shown at different fixed mutation ratesof a stochastic
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FIG. 2. Same as Fig. 1 for an evolution on the rugged landscape
of the NK-model energy function witK=8.

gradient descent for the random paramagnet. In comparison, the
points show the dynamics of the adaptive mutation algorithm. In a”lnserting this into Eq(6), and minimizing the expected best

simulations a quenched average over 200 runs is shown, with

random energy function chosen once. The dotted line denotes the

global optimum of the function.

beginning in order to be able to choose an optimaln the
following, this problem will be addressed through a variable
mutation ratey(t), that combines the advantages of both
regimes of the mutation ratg.

IV. ANNEALING THE MUTATION RATE

fhember of the next generatiqi ,i,(t+ 1)) with respect to
, Yields an estimate for an optimal correlation:

Mop™= \/

This is subsequently translated into an optimal mutation rate
Yopt Via

m

(Emin(t) — k)2
213 IN(P) + (Emin(t) — kD)?

®

m=1-2y, 9

For this purpose, the expected best member of a popula-

tion after mutatior{E,,) is evaluated on the basis of the
energy distributiono™(E) of the population after mutation
given in terms of cumulantg". The expectation value for
the lowest energy occurring in a set®sampleq18] drawn
from the post-mutation distributiop™(E) is

(End=P | dEE,MED] [ dEpnEN. ©

In the Gaussian approximation, a saddle point expansio
yields, to leading order,

(E miny=k7'"— V25 InP.

Inserting the post-mutation distributi@d), the expected en-
ergy of the best member after mutatiQ;,) can be mini-
mized in terms ofn. The resulting mutation correlatian,

is then used to choose the mutation rate the forthcoming
mutation step, thereby optimizing the expected best memb
of the next generation. Unfortunately, this method is plague

(6)

by large fluctuations in the measured moments of the energy

distribution.

which is derived from the known energy function. Each time
step of the modified algorithm can now be described as fol-
lows: (1) Determine the lowest enerdy,,, in the popula-
tion. (2) Calculate the optimal correlatiom,,; from Eq. (8)

and calculate the mutation ragg,, from this. (3) Select the
member with the lowest energy4) Reproduce itP—1
times. (5) “Mutate” the new copies by inverting each spin
with the mutation ratey,. (6) Replace all members, except
the one with the lowest energy, by the mutated copies. Start-
H}g from an initial condition as above and iterating this step
results in an algorithm with an adaptive mutation rate. How
it applies to the above test function is shown in Fig. 1. At
each time scale, the evolution of the lowest energy member
of the evolving population compares well to the respective
best “fixed mutation rate algorithm.” No explicit knowledge
of favorable ranges of the mutation rageis used, thus re-
moving the free parametey from the algorithm. Applying

the formalism to the NK-model functio(®), and using the

lation between parent child correlationand mutation rate
dF
& derived as

m=(1-»)" "4, (10

Therefore, let us first look at the expected dynamics of the, comparable result is obtainéig. 2).

stochastic gradient descent where this problem does not o
cur. Following Eq.(4), the energy distribution after the mu-
tation step is given in the Gaussian approximation by

KP=MEmn(t) +(1—m)«3,

@)

KP=(1—-m?) k9.

C A similar procedure can also be carried out for the full

population-based algorithm with sparse replication. Again,
Eq. (4) is used to adjust the mutation rate in the next genera-
tion to a value that maximizes the expected gain. In order to
avoid large fluctuations, which would be incompatible with a

smooth evolution, we do not base the prediction on the cu-
mulants of the current energy distribution in the population,



PRE 59 ANNEALING SCHEDULE FROM POPULATION DYNAMICS 3945

but rather orE ,;, alone. This is done in the spirit of EG), copy of E ,, made per generation. Let us assume that a
which is less likely to fluctuate than the prediction based omumber ofM members of the population are strongly corre-
the full cumulantsk; . However,E,;, still relates to the dy- lated with the new offspring. For simplicity we further as-
namics of a mixed population, and proves to be useful irsume that the remaining members are completely uncorre-
modeling the population dynamics under mutation. Dependkated and treat them as random. In this approximation, the
ing on the mutation strength, a number of former mutants aréntegral for the expected best member of a population can be
still correlated with the new offspring, in addition to the one written as

M-1 }P—l—M

(Emin)=M J,wd E1E1p™(Eq) X +(P-1- M)J,wd E1E1p%(Ey)

f dExp™(Ey)
=

J dE3p®(E3)
=

M

X (11

” P—2-M
j dEzp™(Ey) }
Eq

j dEgp(Es)
Eq

It is solved using a saddle point expansion in the Gaussiaher with the highest energy by the new cog§. “Mutate”
approximation, considering the limit where the distributionsall members except the original one with the lowest energy
p™ and p° move sufficiently apart from each oth&tue to by inverting each spin with the probability .. Again start-
Emin moving away from the random population distribution ing from an initial condition as above and iterating this step
where one can neglect their mutual variations. One obtainsresults in an algorithm with annealed mutation rate. In Fig. 3
the evolution of the best population member on the basis of
this algorithm is compared to runs with fixed mutation rates.
The algorithm adjusting the mutation rate compares well to
the fixed mutation rate cases at each stage of evolution. In
Fig. 4 the algorithm is applied to the NK-model function
with similar results. For any given resource of CPU time,
one reaches a level of performance comparable to an opti-
mum fixed mutation ratéat the given total evolution time
This is helpful in optimization when the relationship between
mutation ratey and the algorithm dynamics at later times is
Finally, the number of correlated membdvsin the popula- a priori unknown.
tion remains to be specified. For a lowest order estimate let

us consider a member with enerdy,, and mutate itk

times. We then require that its energy does not, on average,

move away more thag2«5' from the current value o, ,
ie.,

(E min) =K1~ \/2K?|n(|\/| —1)+K2— \/2K2|H(P—2—M)_
12

The expectedE i, (t+1)) of the next generation based on
Eq. (7) is then minimized by the mutation rate

_ \/ (Emin(t) - K?)z
Mo N 58 In(M — 1)+ B ) — K02

(13

V. DISCUSSION

For both algorithms considered above, we have seen how
annealing the mutation rate can be based on a simple dy-
namical model based on the energy correlation of the muta-

Emint V2&1>mKE in+ (1—mF) &S, (14)

The exact limit for the number of subsequent mutati@ns
depends on the current details of the energy values in the
population. However, when using E@.3) as an estimate for
the current value o, the energy value of a mutant decor-
relates after only a few mutation steps. Therefore Min(
—1) is estimated to be of the order of 1 and we determine f ¢, |
the optimal mutation rate in the algorithm using

100 |

80+

(Enmin (1) — k9)? 40|

m t: \/ .
PN 209+ (E min(t) — 92

(15

20
This expression is now used for annealing the mutation rate 1

100

10
in the population based algorithm. The modified time step of ; t
the algorithm is defined by the following procedut#) De-

1000

termine the lowest energy,,, in the population(2) Calcu-

late the optimal correlatiom,, from Eg.(15), and calculate
the mutation ratey,, from it. (3) Select the member with the
lowest energy(4) Reproduce it oncg5) Replace the mem-

FIG. 3. Adaptive mutation in the population-based algorithm
compared to the fixed mutation case for a random paramagnet, with
conventions chosen as in the previous figures. The dotted line de-
notes the global optimum of the function.
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30 . . algorithms. This procedure can be defined as follo¢ls:
Start from an initial estimate for. (2) Measure the mutation
correlationm during each time step of the algorithm using
Eq. (3). (3) Use the measurenh to improve the estimate for

X in the linear approximatiofitaken as the average over all
measured values of so fa). This allows one to apply the
method to energy functions with re priori knowledge of
their correlation structure. This method has been sucessfully
tested using the two energy functions of this study.

Several extensions remain to be studied, e.g., algorithms
where recombination, or “crossover,” is present. In such
algorithms, the annealed mutation as described here is ex-
51 1'0 1(')0 1000 pected to work equally well as long as the mutation step does

not strongly interact with the crossover. Whether the recom-

t bination strength can be adapted in a similar way is an open
FIG. 4. Adaptive mutation in the population-based algorithm question. Another free parameter is introduced by selection,
namely, selection strength. Here a one parameter model ex-
ists[10], and an adaptive adjustment could be discussed as
tion operator. In the presented examples, functions withwell.
known analytical properties have been considered, enabling To summarize, we proposed a mechanism for annealing
a direct calculation of the mutation correlation(y). How-  the mutation rate in population-based algorithms. It is based
ever, when applying the above method to general optimizagn a statistical mechanics model of the population dynamics
tion problems, this functional dependence remains to be esind a correlation measure of the mutation operator. The mu-
tablished. For many realistic optimization problems it is welltation ratey thereby drops out as a free parameter of the
approximated by a monotonic function with a simple decayalgorithm.
law in the smally regime, as classified in Refl17] for a
numb_er of different optimization proplems. .For many pr_ob— ACKNOWLEDGMENTS
lems it can be modeled using the simple linear approxima-
tion y(m)=1—xm. In order to apply the above algorithms  The author thanks J. L. Shapiro for a useful discussion on
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compared to a fixed mutation rate for the NK model.
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