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Annealing schedule from population dynamics
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We introduce a dynamical annealing schedule for population-based optimization algorithms with mutation.
On the basis of a statistical mechanics formulation of the population dynamics, the mutation rate adapts to a
value maximizing expected rewards at each time step. Thereby, the mutation rate is eliminated as a free
parameter from the algorithm.@S1063-651X~99!06004-3#

PACS number~s!: 05.50.1q, 87.10.1e, 07.05.Mh, 02.60.Pn
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I. INTRODUCTION

Population-based optimization algorithms@1–3# have
been successfully applied to problems in physics@4,5# and
beyond@6#. This class of algorithms is based on the sim
taneous tracking of more than one point in search spac~a
‘‘population,’’ in analogy to biological evolution@7#!, in or-
der to make trapping in local optima less likely during t
process of optimization. In addition, stochastic noise is u
to generate random displacements of the search points~‘‘mu-
tations’’!, performing a local optimization. A major problem
in these algorithms is the adjustment of the noise level fo
given optimization task. In the beginning of the search, h
noise levels help to identify promising regions of the sea
space, while for a subsequent fine tuning low noise wo
best. This problem is well known from simulated anneali
@8#, an optimization algorithm where noise is introduced
means of a formal temperature. Lowering, or ‘‘annealing
the temperature from high to low values in the course of
optimization leads to improved results compared to an o
mization at fixed temperatures. However, there remains
problem of choosing a suitable annealing schedule fo
given optimization problem@8#. The same problem occurs i
population-based optimization algorithms, and will be a
dressed in the remainder of this paper.

For some population-based algorithms, heuristics h
been proposed that adjust the noise rate during optimiza
For example, when noise is implemented as random step
fixed Euclidean distance in the search space, its step size
be adjusted according to an estimate for the most promi
next step on the basis of the previous one@2#. Another ap-
proach, taken by Davis@9#, uses a set of noise operato
competing for high scores in producing low energy sea
points. Although such approaches work in practice, th
have not been formally established on the basis of a dyna
cal formulation of the algorithm. A major problem is th
enormous complexity of the dynamics of population-bas
algorithms.

Recently, this problem has attracted parts of the phy
community, applying statistical mechanics methods to
algorithm dynamics. Pru¨gel-Bennett and Shapiro@10# de-
scribed the average population dynamics in terms of the
tribution of energy values in the population at each time st
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The observables are the cumulants of the energy distribu
of the population. Selection of the ‘‘fittest’’~the low energy
members! is completely defined in terms of these variable
For certain energy functions, this enables a prediction of
algorithm dynamics to high accuracy over large numbers
generations@11#. In Ref. @12# it was proposed to use thi
formalism in order to determine an annealing schedule fr
the predicted dynamics. However, each of the two immed
routes faces a major obstacle: The analytical approac
only feasible for exactly known energy functions with simp
properties, and involves a complicated maximum entro
calculation. The alternative way via measuring the curr
cumulants during evolution is spoiled by large sample-
sample fluctuations. Here we propose a model which, tho
inspired by this, does not have to deal with these proble
For an a priori unknown energy function~being the usual
case when dealing with optimization problems! a less formal
framework is needed. This is supplied by a dynamical mo
based on energy correlation formulated in Ref.@13#. It will
be used here to predict an optimal noise rate by maximiz
the expected performance of the algorithm in each time s
In the following we will define two test functions and tw
algorithms to be considered. A model for the prediction
the mutation effects will then be given. An improved alg
rithm will be defined on the basis of this model. It is the
applied to the test functions and its performance compare
standard versions of the respective algorithms.

II. TEST SYSTEM

Let us consider an optimization problem in terms of t
minimization of a real valued functionE(S) on a binary
search space. Its value is the energy of the test pointS, which
is to be minimized, equivalent to a search for the grou
state energy of a physical system@14#. In biological terms
this corresponds to the negative ‘‘fitness’’ of an organism
be maximized for survival. The discrete search space will
parametrized through the binary representationSP$61%N of
lengthN.

Two functions serve as examples: one purely additive
ergy function, and another with many local optima. The fi
problem is a random field paramagnet

Ea5(
i 51

N

JiSi
a1k1

0 , ~1!
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with random couplingsJi taken from a Gaussian distributio
with mean 0 and variance 1. TheN spins Si

a with i
51, . . . ,N andSi

a561 form the genetic string of the mem
ber a of the population. The second function is the N
model energy function@15# as an example for a hard sear
problem with many local minima. It is defined through

Ea5(
i 51

N

Ei~Si
a ;Si 1

a , . . . ,Si K
a !, ~2!

with 2K11 random energy valuesEi(S
a) drawn from a uni-

form distribution over the interval@0,1# and a randomly cho-
sen permutation of sitesi 1 to i K , both for eachi . Originally,
this function has been formulated for the study of evolut
on tunably rugged energy landscapes with application to
evolution of the immune response@16#. These functions will
be minimized by means of a population-based algorit
which is defined as follows: First, a random ensemble
search pointsSa with a51, . . . ,P and energiesEa5E(Sa)
is chosen~a ‘‘population’’!. One time step of the algorithm
consists of the following procedure:~1! Select the membe
with the lowest energy.~2! Reproduce it once.~3! Replace
the member with the highest energy by the new copy.~4!
‘‘Mutate’’ all members except the original one with the low
est energy by inverting each spin with a small fixed proba
ity g. Repeating these steps then forms an evolutionary
gorithm searching for low lying energy states. It is driven
selection lowering the mean energy of the population a
mutation increasing the variance.

For comparison let us also look at a simplified algorith
a stochastic gradient descent. After the initial population
chosen as above, the following steps are taken:~1! Select the
member with the lowest energy.~2! Reproduce itP21
times. ~3! ‘‘Mutate’’ the new copies by inverting each spi
with a small fixed probabilityg. ~4! Replace all members
except the one with the lowest energy, by the mutated c
ies. Here the offspring of the best member takes over
entire population in each time step.

III. MODELING THE ALGORITHM DYNAMICS

We will model the dynamics of these algorithms in term
of the energy distributionr(E) of the population expresse
as an expansion in cumulants. The energy distributionr(E)
of a population is the natural quantity for the selection o
erator, which solely acts on the energy values of the sea
points. The expansion in cumulants of the energy distribut
r(E) has been shown to be a useful approximation
population-based algorithms@11#. At each time step, the
evolving population is then approximated by a set of th
variables. When also modeling the mutation operator,
has to be more careful. Mutation, acting on the underly
representation instead of the energy values themselves
quires additional assumptions to model its dynamics in te
of r(E). For example, one could obtain a maximum like
hood estimation for the underlying spin states correspond
to a given energy cumulant, and use this to calculate
expected effect of the mutation operator. However, suc
procedure requires simple energy functions to allow for
calculation, and, of course, a complete knowledge of the
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ergy function, which is usually not available for realistic o
timization problems.

Here we use a different approach which is based solely
a phenomenological parameter that is accessible by mea
ment if the energy function is not known@13#. In particular,
we will use a model for the lowest order average dynam
of the mutation operator on the basis of the energy corr
tion m of mutation on a given energy landscapeE(S),

m5
^EaEa

m&a,mut2^Ea&a^Ea
m&a,mut

^Ea
2&a2^Ea&a

2
, ~3!

where^ &a denotes an average over the population, and^ &mut
an average over all possible mutation events. The ene
correlationm is a measure of how strongly, on average, t
energy of a mutant is correlated to that of its parent, fo
given mutation operator applied to a given energy functi
Such correlations form the backbone on which the sea
process in mutation-based algorithms proceeds. Energy
relations can be measured for many hard optimization pr
lems, as were recently classified in Ref.@17#. In this frame-
work, the energy distribution of a population after mutati
can be approximated by its cumulants as a function ofm,

k1
m5mk11~12m!k1

0,

k2
m5m2k21~12m2!k2

0,

k3
m5m3k3,

k4
m5m4k4 , ~4!

where k1
0 and k2

0 are the energy mean and variance of
random initial population. This model was derived in Re
@13#. The underlying assumption of this model is that t
population of the algorithm~not the landscape itself! can be
expanded in cumulants around a Gaussian. In fact, one
serves that the initial random population for many real op
mization problems fulfills this requirement well. In th
framework of this expansion, the above model usesm to
predict the expected energy distribution of the population
the next time step. Such a model, based on energy cor
tions, further assumes that the lowest order correlationm
contains major information about the average effect of
mutation operator. It has been shown to be useful to desc
the dynamics of a population-based algorithm over at le
200 generations, both for correlated and poorly correla
landscapes@13#.

How can such a model be used to improve an optimi
tion algorithm? Let us look at a numerical example for t
dynamics of a stochastic gradient descent under a fixed
tation rateg, as shown in Fig. 1. Optimization of the first te
function ~1! is shown with a stochastic gradient desce
searching for the minimal energy configuration of a rand
paramagnet ofN5128 spins in an external field. For a larg
mutation rateg one sees that the early gain is large, where
for smallg, as shown by the solid curve, a poor early gain
balanced later by a slow but steady improvement. For o
mization problems involving computationally costly ener
evaluation, this behavior poses a severe problem. Knowle
of the latter stages of the dynamics would be needed at
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3944 PRE 59STEFAN BORNHOLDT
beginning in order to be able to choose an optimalg. In the
following, this problem will be addressed through a variab
mutation rateg(t), that combines the advantages of bo
regimes of the mutation rateg.

IV. ANNEALING THE MUTATION RATE

For this purpose, the expected best member of a pop
tion after mutation^Emin& is evaluated on the basis of th
energy distributionrm(E) of the population after mutation
given in terms of cumulantsk i

m . The expectation value fo
the lowest energy occurring in a set ofP samples@18# drawn
from the post-mutation distributionrm(E) is

^Emin&5PE
2`

`

dE1E1rm~E1!)
n52

P E
E1

`

dEnrm~En!. ~5!

In the Gaussian approximation, a saddle point expans
yields, to leading order,

^E min&5k1
m2A2k2

m ln P. ~6!

Inserting the post-mutation distribution~4!, the expected en
ergy of the best member after mutation^Emin& can be mini-
mized in terms ofm. The resulting mutation correlationmopt
is then used to choose the mutation rateg in the forthcoming
mutation step, thereby optimizing the expected best mem
of the next generation. Unfortunately, this method is plagu
by large fluctuations in the measured moments of the ene
distribution.

Therefore, let us first look at the expected dynamics of
stochastic gradient descent where this problem does no
cur. Following Eq.~4!, the energy distribution after the mu
tation step is given in the Gaussian approximation by

k1
m5mEmin~ t !1~12m!k1

0 ,

k2
m5~12m2!k2

0 . ~7!

FIG. 1. The evolution of the member with maximum fitnessf
52Emin is shown at different fixed mutation ratesg of a stochastic
gradient descent for the random paramagnet. In comparison
points show the dynamics of the adaptive mutation algorithm. In
simulations a quenched average over 200 runs is shown, wi
random energy function chosen once. The dotted line denotes
global optimum of the function.
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Inserting this into Eq.~6!, and minimizing the expected bes
member of the next generation^Emin(t11)& with respect to
m, yields an estimate for an optimal correlation:

mopt5A „Emin~ t !2k1
0
…

2

2k2
0 ln~P!1„Emin~ t !2k1

0
…

2
. ~8!

This is subsequently translated into an optimal mutation r
gopt via

m5122g, ~9!

which is derived from the known energy function. Each tim
step of the modified algorithm can now be described as
lows: ~1! Determine the lowest energyEmin in the popula-
tion. ~2! Calculate the optimal correlationmopt from Eq. ~8!
and calculate the mutation rategopt from this. ~3! Select the
member with the lowest energy.~4! Reproduce itP21
times. ~5! ‘‘Mutate’’ the new copies by inverting each spi
with the mutation rategopt. ~6! Replace all members, excep
the one with the lowest energy, by the mutated copies. S
ing from an initial condition as above and iterating this st
results in an algorithm with an adaptive mutation rate. H
it applies to the above test function is shown in Fig. 1.
each time scale, the evolution of the lowest energy mem
of the evolving population compares well to the respect
best ‘‘fixed mutation rate algorithm.’’ No explicit knowledg
of favorable ranges of the mutation rateg is used, thus re-
moving the free parameterg from the algorithm. Applying
the formalism to the NK-model function~2!, and using the
relation between parent child correlationm and mutation rate
g, derived as

m5~12g!K11, ~10!

a comparable result is obtained~Fig. 2!.
A similar procedure can also be carried out for the f

population-based algorithm with sparse replication. Aga
Eq. ~4! is used to adjust the mutation rate in the next gene
tion to a value that maximizes the expected gain. In orde
avoid large fluctuations, which would be incompatible with
smooth evolution, we do not base the prediction on the
mulants of the current energy distribution in the populatio

he
ll
a

he

FIG. 2. Same as Fig. 1 for an evolution on the rugged landsc
of the NK-model energy function withK58.
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but rather onE min alone. This is done in the spirit of Eq.~7!,
which is less likely to fluctuate than the prediction based
the full cumulantsk i . However,Emin still relates to the dy-
namics of a mixed population, and proves to be usefu
modeling the population dynamics under mutation. Depe
ing on the mutation strength, a number of former mutants
still correlated with the new offspring, in addition to the on
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copy of E min made per generation. Let us assume tha
number ofM members of the population are strongly corr
lated with the new offspring. For simplicity we further a
sume that the remaining members are completely unco
lated and treat them as random. In this approximation,
integral for the expected best member of a population can
written as
^Emin&5ME
2`

`

dE1E1rm~E1!3F E
E1

`

dE2rm~E2!GM21F E
E1

`

dE3r0~E3!GP212M

1~P212M !E
2`

`

dE1E1r0~E1!

3F E
E1

`

dE2rm~E2!GMF E
E1

`

dE3r0~E3!GP222M

. ~11!
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It is solved using a saddle point expansion in the Gaus
approximation, considering the limit where the distributio
rm and r0 move sufficiently apart from each other~due to
Emin moving away from the random population distribution!,
where one can neglect their mutual variations. One obta

^E min&5k1
m2A2k2

m ln~M21!1k1
02A2k2

0 ln~P222M !.
~12!

The expected̂E min (t11)& of the next generation based o
Eq. ~7! is then minimized by the mutation rate

m opt5A „Emin~ t !2k1
0
…

2

2k2
0 ln~M21!1„Emin~ t !2k1

0
…

2
. ~13!

Finally, the number of correlated membersM in the popula-
tion remains to be specified. For a lowest order estimate
us consider a member with energyEmin and mutate itk
times. We then require that its energy does not, on aver
move away more thanA2k2

m from the current value ofEmin ,
i.e.,

Emin1A2k2
m.mkE min1~12mk!k1

0 . ~14!

The exact limit for the number of subsequent mutationk
depends on the current details of the energy values in
population. However, when using Eq.~13! as an estimate fo
the current value ofm, the energy value of a mutant deco
relates after only a few mutation steps. Therefore, lnM
21) is estimated to be of the order of 1 and we determ
the optimal mutation rate in the algorithm using

m opt5A „Emin ~ t !2k1
0
…

2

2k2
01„E min~ t !2k1

0
…

2
. ~15!

This expression is now used for annealing the mutation
in the population based algorithm. The modified time step
the algorithm is defined by the following procedure:~1! De-
termine the lowest energyEmin in the population.~2! Calcu-
late the optimal correlationmopt from Eq.~15!, and calculate
the mutation rategopt from it. ~3! Select the member with th
lowest energy.~4! Reproduce it once.~5! Replace the mem
n

s

et

e,

e

e

te
f

ber with the highest energy by the new copy.~6! ‘‘Mutate’’
all members except the original one with the lowest ene
by inverting each spin with the probabilityg opt. Again start-
ing from an initial condition as above and iterating this st
results in an algorithm with annealed mutation rate. In Fig
the evolution of the best population member on the basis
this algorithm is compared to runs with fixed mutation rat
The algorithm adjusting the mutation rate compares wel
the fixed mutation rate cases at each stage of evolution
Fig. 4 the algorithm is applied to the NK-model functio
with similar results. For any given resource of CPU tim
one reaches a level of performance comparable to an o
mum fixed mutation rate~at the given total evolution time!.
This is helpful in optimization when the relationship betwe
mutation rateg and the algorithm dynamics at later times
a priori unknown.

V. DISCUSSION

For both algorithms considered above, we have seen
annealing the mutation rate can be based on a simple
namical model based on the energy correlation of the m

FIG. 3. Adaptive mutation in the population-based algorith
compared to the fixed mutation case for a random paramagnet,
conventions chosen as in the previous figures. The dotted line
notes the global optimum of the function.
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tion operator. In the presented examples, functions w
known analytical properties have been considered, enab
a direct calculation of the mutation correlationm(g). How-
ever, when applying the above method to general optim
tion problems, this functional dependence remains to be
tablished. For many realistic optimization problems it is w
approximated by a monotonic function with a simple dec
law in the smallg regime, as classified in Ref.@17# for a
number of different optimization problems. For many pro
lems it can be modeled using the simple linear approxim
tion g(m)512xm. In order to apply the above algorithm
to optimization problems where the energy function is n
known, a heuristics that measures this relation for a gi
problem has been defined. One possibility is to measurm
and improve the estimate forx during the run of the above

FIG. 4. Adaptive mutation in the population-based algorith
compared to a fixed mutation rate for the NK model.
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algorithms. This procedure can be defined as follows:~1!
Start from an initial estimate forx. ~2! Measure the mutation
correlationm during each time step of the algorithm usin
Eq. ~3!. ~3! Use the measuredm to improve the estimate fo
x in the linear approximation~taken as the average over a
measured values ofx so far!. This allows one to apply the
method to energy functions with noa priori knowledge of
their correlation structure. This method has been sucess
tested using the two energy functions of this study.

Several extensions remain to be studied, e.g., algorith
where recombination, or ‘‘crossover,’’ is present. In su
algorithms, the annealed mutation as described here is
pected to work equally well as long as the mutation step d
not strongly interact with the crossover. Whether the reco
bination strength can be adapted in a similar way is an o
question. Another free parameter is introduced by select
namely, selection strength. Here a one parameter mode
ists @10#, and an adaptive adjustment could be discussed
well.

To summarize, we proposed a mechanism for annea
the mutation rate in population-based algorithms. It is ba
on a statistical mechanics model of the population dynam
and a correlation measure of the mutation operator. The
tation rateg thereby drops out as a free parameter of
algorithm.
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